Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polarimetric data provide key insights into infrared emission mechanisms in the inner disks of young stellar objects (YSOs) and the details of dust formation around asymptotic giant branch (AGB) stars. While polarization measurements are well-established in radio interferometry, they remain challenging at visible and near-infrared wavelengths, due to the significant time-variable birefringence introduced by the complex optical beam train. In this study, we characterize instrumental polarization effects within the optical path of the Center for High Angular Resolution Astronomy (CHARA) Array, focusing on theH-band MIRC-X andK-band MYSTIC beam combiners. Using the Jones matrix formalism, we developed a comprehensive model describing diattenuation and retardance across the array. By applying this model to an unpolarized calibrator, we derived the instrumental parameters for both MIRC-X and MYSTIC. Our results show differential diattenuation consistent with ≥97% reflectivity per aluminum-coated surface at 45° incidence. The differential retardance exhibits small wavelength-dependent variations, in some cases larger than we expected. Notably, telescope W2 exhibits a significantly larger phase shift in the Coudé path, attributable to a fixed aluminum mirror (M4) used in place of deformable mirrors present on the other telescopes during the observing run. We also identify misalignments in the LiNbO3birefringent compensator plates on S1 (MIRC-X) and W2 (MYSTIC). After correcting for night-to-night offsets, we achieve calibration accuracies of ±3.4% in visibility ratio and in differential phase for MIRC-X, and ±5.9% and , respectively, for MYSTIC. Given that the differential intrinsic polarization of spatially resolved sources, such as AGB stars and YSOs, typically greater than these instrumental uncertainties, our results demonstrate that CHARA is now capable of achieving high-accuracy measurements of intrinsic polarization in astrophysical targets.more » « lessFree, publicly-accessible full text available November 21, 2026
-
Abstract We present a study of the double-lined spectroscopic binary HD 21278 that contains one of the brightest main-sequence stars in the youngαPersei open cluster. We analyzed new spectra and reanalyzed archived spectra to measure precise new radial velocity curves for the binary. We also obtained interferometric data using the CHARA Array at Mount Wilson to measure the sky positions of the two stars and the inclination of the ∼2 mas orbit. We determine that the two stars have masses of 5.381 ± 0.084M⊙and 3.353 ± 0.064M⊙. From isochrone fits, we find the cluster’s age to be 49 ± 7 Myr (using PARSEC models) or 49.5 ± 6 Myr (MIST models). Finally, we revisit the massive white dwarfs that are candidate escapees from theαPersei cluster to try to better characterize the massive end of the white dwarf initial–final mass relation. The implied progenitor masses challenge the idea that Chandrasekhar-mass white dwarfs are made by single stars with masses near 8M⊙.more » « lessFree, publicly-accessible full text available July 17, 2026
-
Abstract We report new spectroscopic and interferometric observations of the Pleiades binary star Atlas, which played an important role nearly 3 decades ago in settling the debate over the distance to the cluster from ground-based and space-based determinations. We use the new measurements, together with other published and archival astrometric observations, to improve the determination of the 291 day orbit and the distance to Atlas (136.2 ± 1.4 pc). We also derive the main properties of the components, including their absolute masses (5.04 ± 0.17M⊙and 3.64 ± 0.12M⊙), sizes, effective temperatures, projected rotational velocities, and chemical compositions. We find that the more evolved primary star is rotationally distorted, and we are able to estimate its oblateness and the approximate orientation of its spin axis from the interferometric observations. The spin axis may well be aligned with the orbital axis. Models of stellar evolution from the Modules for Experiments in Stellar Astrophysics (or MESA) that account for rotation provide a good match to all of the primary’s global properties, and point to an initial angular rotation rate on the zero-age main sequence of about 55% of the breakup velocity. The current location of the star in the Hertzsprung–Russell diagram is near the very end of the hydrogen-burning main sequence, at an age of about 105 Myr, according to these models. Our spectroscopic analysis of the more slowly rotating secondary indicates that it is a helium-weak star, with other chemical anomalies.more » « lessFree, publicly-accessible full text available September 2, 2026
-
Abstract W Serpentis is an eclipsing binary system and the prototype of the Serpentid class of variable stars. These are interacting binaries experiencing intense mass transfer and mass loss. However, the identities and properties of both stars in W Ser remain a mystery. Here, we present an observational analysis of high-quality, visible-band spectroscopy made with the Apache Point Observatory 3.5 m telescope and Astrophysical Research Consortium Echelle Spectrograph spectrograph plus the first near-IR, long-baseline interferometric observations obtained with the Center for High Angular Resolution Astronomy Array. We present examples of the appearance and radial velocities of the main spectral components: prominent emission lines, strong shell absorption lines, and weak absorption lines. We show that some of the weak absorption features are associated with the cool mass donor, and we present the first radial velocity curve for the donor star. The donor’s absorption lines are rotationally broadened, and we derive a ratio of donor to gainer mass of 0.36 ± 0.09 based on the assumptions that the donor fills its Roche lobe and that it rotates synchronously with the orbit. We use a fit of the All-Sky Automated Survey light curve to determine the orbital inclination and mass estimates of 2.0M⊙and 5.7M⊙for the donor and gainer, respectively. The partially resolved interferometric measurements of orbital motion are consistent with our derived orbital properties and the distance from Gaia EDR3. Spectroscopic evidence indicates that the gainer is enshrouded in an opaque disk that channels the mass transfer stream into an outflow through the L3 region and into a circumbinary disk.more » « less
-
Sallum, Stephanie; Sanchez-Bermudez, Joel; Kammerer, Jens (Ed.)
-
Free, publicly-accessible full text available December 5, 2026
-
Abstract We report long-baseline interferometric observations with the CHARA Array that resolve six previously known double-lined spectroscopic binary systems in the Hyades cluster, with orbital periods ranging from 3 to 358 days: HD 27483, HD 283882, HD 26874, HD 27149, HD 30676, and HD 28545. We combine those observations with new and existing radial-velocity measurements, to infer the dynamical masses for the components as well as the orbital parallaxes. For most stars, the masses are determined to be better than 1%. Our work significantly increases the number of systems with mass determinations in the cluster. We find that, while current models of stellar evolution for the age and metallicity of the Hyades are able to reproduce the overall shape of the empirical mass–luminosity relation, they overestimate theV-band fluxes by about 0.1 mag between 0.5 and 1.4M⊙. The disagreement is smaller inH, and near zero inK, and depends somewhat on the model. We also make use of the TESS light curves to estimate rotation periods for our targets, and detect numerous flares in one of them (HD 283882), estimating an average flaring rate of 0.44 events per day.more » « less
-
Sallum, Stephanie; Sanchez-Bermudez, Joel; Kammerer, Jens (Ed.)
-
Context.V838 Mon is a stellar merger remnant that erupted in a luminous red nova event in 2002. Although it has been well studied in the optical, near-infrared, and submillimeter regimes, its structure in the mid-infrared wavelengths remains elusive. Over the past two decades, only a handful of infrared interferometric studies have been performed, suggesting the presence of an elongated structure at multiple wavelengths. However, given the limited nature of these observations, the true morphology of the source has not yet been conclusively determined. Aims.By performing image reconstruction using observations taken at the VLTI and CHARA, we aim to map out the circumstellar environment in V838 Mon. Methods.We observed V838 Mon with the MATISSE (LMNbands) and GRAVITY (Kband) instruments at the VLTI as well as the MIRCX/MYSTIC (HKbands) instruments at the CHARA array. We geometrically modelled the squared visibilities and the closure phases in each of the bands to obtain the constraints on the physical parameters. Furthermore, we constructed high-resolution images of V838 Mon in theHKbands using the MIRA and SQUEEZE algorithms to study the immediate surroundings of the star. Lastly, we also modelled the spectral features seen in theKandMbands at various temperatures. Results.The image reconstructions show a bipolar structure that surrounds the central star in the post-merger remnant. In theKband, the super-resolved images show an extended structure (uniform disk diameter ~1.94 mas) with a clumpy morphology that is aligned along a north-west position angle (PA) of −40°. On the other hand, in theHband, the extended structure (uniform disk diameter ~1.18 mas) lies roughly along the same PA. Yet the northern lobe is slightly misaligned with respect to the southern lobe, which results in the closure phase deviations. Conclusions.The VLTI and CHARA imaging results show that V838 Mon is surrounded by features resembling jets that are intrinsically asymmetric. This is further confirmed by the closure phase modelling. Further observations with VLTI can help to determine whether this structure shows any variations over time and also if such bi-polar structures are commonly formed in other stellar merger remnants.more » « less
-
Abstract The 30 yr orbit of the Cepheid Polaris has been followed with observations by the Center for High Angular Resolution Astronomy (CHARA) Array from 2016 through 2021. An additional measurement has been made with speckle interferometry at the Apache Point Observatory. Detection of the companion is complicated by its comparative faintness—an extreme flux ratio. Angular diameter measurements appear to show some variation with pulsation phase. Astrometric positions of the companion were measured with a custom grid-based model-fitting procedure and confirmed with the CANDID software. These positions were combined with the extensive radial velocities (RVs) discussed by Torres to fit an orbit. Because of the imbalance of the sizes of the astrometry and RV data sets, several methods of weighting are discussed. The resulting mass of the Cepheid is 5.13 ± 0.28M⊙. Because of the comparatively large eccentricity of the orbit (0.63), the mass derived is sensitive to the value found for the eccentricity. The mass combined with the distance shows that the Cepheid is more luminous than predicted for this mass from evolutionary tracks. The identification of surface spots is discussed. This would give credence to the identification of a radial velocity variation with a period of approximately 120 days as a rotation period. Polaris has some unusual properties (rapid period change, a phase jump, variable amplitude, and unusual polarization). However, a pulsation scenario involving pulsation mode, orbital periastron passage, and low pulsation amplitude can explain these characteristics within the framework of pulsation seen in Cepheids.more » « less
An official website of the United States government
